Usage ===== Quickstart ---------- .. code-block:: python import torch from pppca.core import pppca processes = [torch.rand((5, 2)) for _ in range(10)] results = pppca(processes, Jmax=2) print(results["eigenval"]) Save and reload models ---------------------- .. code-block:: python from pppca.core import load_pppca_features, pppca, save_pppca_features results = pppca(processes, Jmax=3, return_state=True) save_pppca_features("pppca_features.npz", state=results["state"]) state = load_pppca_features("pppca_features.npz") eigenfun = state["eigenfun"] Project new samples ------------------- .. code-block:: python from pppca.core import project_pppca new_scores = project_pppca(processes, state=state) print(new_scores.head()) Visualize eigenfunctions ------------------------ .. code-block:: python from pppca.core import plot_eigenfunctions plot_eigenfunctions(state["eigenfun"], d=2, Jmax=3)